Low rank matrix recovery from Clifford orbits
نویسندگان
چکیده
We prove that low-rank matrices can be recovered efficiently from a small number of measurements that are sampled from orbits of a certain matrix group. As a special case, our theory makes statements about the phase retrieval problem. Here, the task is to recover a vector given only the amplitudes of its inner product with a small number of vectors from an orbit. Variants of the group in question have appeared under different names in many areas of mathematics. In coding theory and quantum information, it is the complex Clifford group; in time-frequency analysis the oscillator group; and in mathematical physics the metaplectic group. It affords one particularly small and highly structured orbit that includes and generalizes the discrete Fourier basis: While the Fourier vectors have coefficients of constant modulus and phases that depend linearly on their index, the vectors in said orbit have phases with a quadratic dependence. In quantum information, the orbit is used extensively and is known as the set of stabilizer states. We argue that due to their rich geometric structure and their near-optimal recovery properties, stabilizer states form an ideal model for structured measurements for phase retrieval. Our results hold for m ≥ Cκrrd log(d) measurements, where the oversampling factor κr varies between κr = 1 and κr = r2 depending on the orbit. The reconstruction is stable towards both additive noise and deviations from the assumption of low rank. If the matrices of interest are in addition positive semidefinite, reconstruction may be performed by a simple constrained least squares regression. Our proof methods could be adapted to cover orbits of other groups.
منابع مشابه
Sufficient Conditions for Low-rank Matrix Recovery, Translated from Sparse Signal Recovery
The low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, system identification and control. This class of optimization problems is NP-hard and a popular approach replaces the rank function with the nuclear norm of the matrix variable. In this paper, we ...
متن کاملUnicity conditions for low-rank matrix recovery
Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractible approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m ≥ Cnr Gaussian measurements are sufficient to recover any rank-r n×...
متن کاملOnline Robust Low Rank Matrix Recovery
Low rank matrix recovery has shown its importance as a theoretic foundation in many areas of information processing. Its solutions are usually obtained in batch mode that requires to load all the data into memory during processing, and thus are hardly applicable on large scale data. Moreover, a fraction of data may be severely contaminated by outliers, which makes accurate recovery significantl...
متن کاملUniqueness Conditions For Low-Rank Matrix Recovery
Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractable approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m ≥ Cnr Gaussian measurements are sufficient to recover any rank-r n ...
متن کاملS-semigoodness for Low-Rank Semidefinite Matrix Recovery
We extend and characterize the concept of s-semigoodness for a sensing matrix in sparse nonnegative recovery (proposed by Juditsky , Karzan and Nemirovski [Math Program, 2011]) to the linear transformations in low-rank semidefinite matrix recovery. We show that ssemigoodness is not only a necessary and sufficient condition for exact s-rank semidefinite matrix recovery by a semidefinite program,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.08070 شماره
صفحات -
تاریخ انتشار 2016